PIC18F46K22价格

参考价格:¥22.8961

型号:PIC18F46K22-E/ML 品牌:Microchip 备注:这里有PIC18F46K22多少钱,2026年最近7天走势,今日出价,今日竞价,PIC18F46K22批发/采购报价,PIC18F46K22行情走势销售排行榜,PIC18F46K22报价。
型号 功能描述 生产厂家 企业 LOGO 操作
PIC18F46K22

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

PIC18F46K22

Flash Memory Programming Specification

文件:545.77 Kbytes Page:42 Pages

MICROCHIP

微芯科技

PIC18F46K22

Newer Device Available PIC18F46Q10

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU: • C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code • Up to 1024 Bytes Data EEPROM • Up to 64 Kbytes Linear Program Memory Addressing • Up to 3896 Bytes Linear Data Memory Addressing • Up to 16 MIPS Operatio

MICROCHIP

微芯科技

28/40/44-Pin, Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology

文件:5.67499 Mbytes Page:496 Pages

MICROCHIP

微芯科技

PIC18F46K22产品属性

  • 类型

    描述

  • 型号

    PIC18F46K22

  • 功能描述

    8位微控制器 -MCU 64KB Flash 3968B RAM 8b FamilynanoWat XLP

  • RoHS

  • 制造商

    Silicon Labs

  • 核心

    8051

  • 处理器系列

    C8051F39x

  • 数据总线宽度

    8 bit

  • 最大时钟频率

    50 MHz

  • 程序存储器大小

    16 KB 数据 RAM

  • 大小

    1 KB 片上

  • ADC

    Yes

  • 工作电源电压

    1.8 V to 3.6 V

  • 工作温度范围

    - 40 C to + 105 C

  • 封装/箱体

    QFN-20

  • 安装风格

    SMD/SMT

更新时间:2026-1-28 16:07:00
IC供应商 芯片型号 品牌 批号 封装 库存 备注 价格
Microchip Technology
25+
44-VQFN 裸露焊盘
9350
独立分销商 公司只做原装 诚心经营 免费试样正品保证
MICROCHIP
1314+
QFN44
15
MICROCHIP
24+
N/A
8000
全新原装正品,现货销售
Microchip
25+
TQFP44
22000
一级代理原装正品,实单必成。
Microchip(微芯)
24+
标准封装
37048
全新原装正品/价格优惠/质量保障
Microchip(微芯)
25+
TQFP-44
7589
全新原装现货,支持排单订货,可含税开票
Microchip(微芯)
23+
NA
20094
正纳10年以上分销经验原装进口正品做服务做口碑有支持
MICROCHIP
25+
QFNEP
3000
全新原装、诚信经营、公司现货销售!
MICROCHIP/微芯
25+
QFN44
147
全新原装正品支持含税
MicrochipTechnology
18+
6580
ICMCU8BIT64KBFLASH44QFN

PIC18F46K22数据表相关新闻