MAX635价格

参考价格:¥66.8876

型号:MAX6350CPA+ 品牌:Maxim 备注:这里有MAX635多少钱,2025年最近7天走势,今日出价,今日竞价,MAX635批发/采购报价,MAX635行情走势销售排行榜,MAX635报价。
型号 功能描述 生产厂家 企业 LOGO 操作
MAX635

Preset/Adjustable Output CMOS Inverting Switching Regulators

General Description The MAX635/MAX636/MAX637 inverting switching regulators are designed for minimum component DC-DC conversion in the 5mW to 500mW range. Applications    Minimum Component, High-Efficiency DC-DC Converters    Portable Instruments    Battery Power Conversion    Board Level DC

Maxim

美信

MAX635

预置/可调输出、CMOS、反相开关型稳压器

AD

亚德诺

1ppm/째C, Low-Noise, 2.5V/4.096V/5V Voltage References

General Description The MAX6325/MAX6341/MAX6350 are low-noise, precision voltage references with extremely low, 0.5ppm/°C typical temperature coefficients and excellent, ±0.02 initial accuracy. These devices feature buried-zener technology for lowest noise performance. Load-regulation specificati

Maxim

美信

1ppm/째C, Low-Noise, 2.5V/4.096V/5V Voltage References

General Description The MAX6325/MAX6341/MAX6350 are low-noise, precision voltage references with extremely low, 0.5ppm/°C typical temperature coefficients and excellent, ±0.02 initial accuracy. These devices feature buried-zener technology for lowest noise performance. Load-regulation specificati

Maxim

美信

1ppm/째C, Low-Noise, 2.5V/4.096V/5V Voltage References

General Description The MAX6325/MAX6341/MAX6350 are low-noise, precision voltage references with extremely low, 0.5ppm/°C typical temperature coefficients and excellent, ±0.02 initial accuracy. These devices feature buried-zener technology for lowest noise performance. Load-regulation specificati

Maxim

美信

1ppm/째C, Low-Noise, 2.5V/4.096V/5V Voltage References

General Description The MAX6325/MAX6341/MAX6350 are low-noise, precision voltage references with extremely low, 0.5ppm/°C typical temperature coefficients and excellent, ±0.02 initial accuracy. These devices feature buried-zener technology for lowest noise performance. Load-regulation specificati

Maxim

美信

1ppm/째C, Low-Noise, 2.5V/4.096V/5V Voltage References

General Description The MAX6325/MAX6341/MAX6350 are low-noise, precision voltage references with extremely low, 0.5ppm/°C typical temperature coefficients and excellent, ±0.02 initial accuracy. These devices feature buried-zener technology for lowest noise performance. Load-regulation specificati

Maxim

美信

1ppm/째C, Low-Noise, 2.5V/4.096V/5V Voltage References

General Description The MAX6325/MAX6341/MAX6350 are low-noise, precision voltage references with extremely low, 0.5ppm/°C typical temperature coefficients and excellent, ±0.02 initial accuracy. These devices feature buried-zener technology for lowest noise performance. Load-regulation specificati

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

Dual/Triple-Voltage 關P Supervisory Circuits

General Description The MAX6351–MAX6360 microprocessor (µP) supervisors with multiple reset voltages significantly improve system reliability and accuracy compared to separate ICs or discrete components. If any input supply voltage drops below its associated preset threshold, all reset outputs

Maxim

美信

MAX635产品属性

  • 类型

    描述

  • 型号

    MAX635

  • 功能描述

    基准电压& 基准电流

  • RoHS

  • 制造商

    STMicroelectronics

  • 产品

    Voltage References

  • 拓扑结构

    Shunt References

  • 参考类型

    Programmable

  • 输出电压

    1.24 V to 18 V

  • 初始准确度

    0.25 %

  • 平均温度系数(典型值)

    100 PPM/C 串联 VREF -

  • 输入电压(最大值)

    串联 VREF -

  • 分流电流(最大值)

    60 mA

  • 最大工作温度

    + 125 C

  • 封装/箱体

    SOT-23-3L

  • 封装

    Reel

更新时间:2025-11-1 14:14:00
IC供应商 芯片型号 品牌 批号 封装 库存 备注 价格
MAXIM/美信
25+
SOP8
32000
MAXIM/美信全新特价MAX6350ESA+T即刻询购立享优惠#长期有货
MAXIM
22+
DIP
8200
原装现货库存.价格优势
MAXIM
22+
DIP-8
3000
原装正品,支持实单
MAX
24+
SMD
3000
公司现货
MAXIM(美信)
25
SOIC-8
93
QQ询价 绝对原装正品
MAXIM原装正品专卖价
NEW
8-SOIC
19566
全新原装正品,价格优势,长期供应,量大可订
MAXIM
24+
DIP
6210
绝对原装现货,价格低,欢迎询购!
MAXIM/美信
2021+
SOP-8
9000
原装现货,随时欢迎询价
MAXIM
25+
SO-8
6600
百分百原装正品 真实公司现货库存 本公司只做原装 可
MAXIM/美信
23+
DIP8
32732
原装正品代理渠道价格优势

MAX635数据表相关新闻